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This review is mainly concerned with the basic mechanisms of crystal growth from the flux 
and with the origin of defects in these crystals. An outline is given of the theory of growth 
from solution and this is compared with experiments on aqueous solutions, which are the 
main source of data against which the validity of this theory may be tested. The analogy 
between aqueous solution and flux growth is discussed and estimates given for the rate at 
which crystals grown from the flux in the diffusion-controlled and particle integration- 
controlled limits. Studies of the surfaces of flux crystals favour a screw dislocation mode 
of growth, with propagation by a lateral spreading of layers rather than by spirals. The 
incidence of flux inclusions is discussed and related where possible to the conditions of 
growth. 

1. D e v e l o p m e n t s  in Flux Growth 
In flux growth the constituents of the desired 
crystal are dissolved in a molten salt (the "flux") 
and growth occurs at temperatures well below 
the normal melting point of the crystal. This 
method of crystal growth was first used in the 
mid-nineteenth century, mainly in attempts to 
crystallise ruby and emerald crystals of gem 
quality. This application was discontinued after 
the development of the Verneuil furnace and the 
flux technique was little used until the early 
1950s when it was reintroduced to grow 
crystals of commercially important materials 
which could not be prepared from the pure melt. 

Perhaps the most important advances were the 
growth of BaTiO~ crystals by Remeika [1] and 
of yttrium iron garnet by Nielsen and Dearborn 
[2]. Crystals of a large number of materials have 
now been grown from various fluxes and some of 
these are listed in reviews by Laudise [31, White 
[4], Schroeder and Linares [5] and Roy and 
White [6] who also describe the experimental 
techniques employed. 

In the majority of cases, the materials crystal- 
lised from a high temperature solution are still 
those which cannot easily be grown from the 
melt, for example those which melt incongru- 
ently or become highly non-stoichiometric at the 
melting point. The limitations on the use of flux 
growth are that the crystals are often rather small 
and/or highly imperfect. The recent applications 
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of crystals in such fields as lasers, bubble domain 
devices and non-linear optical systems require 
crystals of good quality and there is an increasing 
tendency in published work to discuss the 
perfection of crystals in addition to the synthesis. 
In this article an attempt is made to correlate the 
various observations discussed in the literature 
which relate to an understanding of the mechan- 
ism of flux growth and of the origin of the 
imperfections. Some of the aspects considered 
here have been discussed in a report by Cobb and 
Wallis [7], who attempted to specify the opti- 
mum conditions for the growth of ruby crystals 
from lanthanum fluoride flux. While the 
application to practical systems is clearly of 
great importance, our emphasis will be on 
examination of the evidence for the assumptions 
normally made by crystals growers in explaining 
observed phenomena. 

2. Stages in Crystal Growth from 
Solution 

Since flux growth is an example of growth from 
solution, the process must be similar to that 
which takes place in aqueous or organic solvents 
at much lower temperatures. The process of 
crystal growth from solution may be considered 
to occur in four stages: 
(a) Transport of solute to the neighbourhood of 
the crystal interface; 
(b) Desolvation and diffusion through a bound- 
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ary layer, often called the "unstirred layer" 
[8, 9] 
(c) Surface diffusion over the crystal interface, 
and 
(d) Integration of solute particles into the 
crystal. 

The method by which solute is transported 
through the solution will depend upon the 
design of the experiment and will involve 
diffusion, convection or forced flow of the 
solution. If crystal growth is to occur, the 
process used must produce a supersaturated 
solution in the neighbourhood of the crystal. 

As the crystal grows, it" will lower the solute 
concentration at the interface and thus create, 
over a finite distance, a concentration gradient 
normal to the interface. Diffusion of solute 
towards the crystal will thus occur and Nernst 
[9] considered the rate of flow of  solute through 
the boundary layer to be the factor which governs 
the rate of crystal growth. 

Surface diffusion may be expected to occur 
whenever the solute concentration in a direction 
parallel to the interface is not constant. The 
direct evidence for a surface diffusion stage is not 
strong, in contrast to the situation for gas 
molecules on solids. It is well known that solids 
adsorb gas molecules and that the rate of 
migration within the adsorption layer is very 
rapid. Adsorption is, in fact, used as a standard 
method for the determination of the specific 
surface area of solids, and the layer is assumed 
to be monomolecular. The situation in liquids is 
not so clearly established and it is convenient to 
treat surface diffusion as part of the process 
whereby the solute particles are integrated into 
the growing crystal. The rate-controlling process 
is then taken to be either the solute transport 
stage or the interface kinetic stage. 

The earliest theories of the integration process 
[10] were based on the principle that the equi- 
librium faces of the crystal will b~, those having 
the lowest free energy. Such faces are normally 
those of low Miller indices and with a high 
density of atomic packing. These faces were 
assumed to be atomically flat and the rate 
determining step is, in this case, the formation 
of a two-dimensional nucleus, consisting of a 
group of atoms, which must exceed a critical size 
if it is to grow rather than decay. Once the 
nucleus forms, growth may proceed rapidly by 
the attachment of molecules at steps around the 
edge of the nucleus. 

One of the central predictions of this two- 
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dimensional nucleation theory is the existence of 
a critical supersaturation, below which no 
crystal growth will occur. The predicted growth 
rates at lower supersaturation were found to 
differ very markedly from experimental values 
in a number of cases and this discrepancy was 
resolved by Frank [11 ], who first drew attention 
to the importance in the growth process of screw 
dislocations. The screw dislocation model is 
incorporated in the theory of Burton, Cabrera, 
and Frank [12]. In this BCF theory, the mole- 
cules arriving at the crystal interface are assumed 
either to evaporate or to enter the crystal at a 
growing spiral which has as its origin a screw 
dislocation. The velocity v at which the crystal 
face grows in the simplest case of non-interacting 
spirals is given by 

v = - -  tanh (1) 
O" 1 

where O" is the relative supersaturation and the 
parameters C and o- 1 depend upon such factors as 
the surface free energy, the surface diffusion 
coefficient of the molecules and the temperature 
at the interface. At supersaturations below the 
critical value el, equation 1 may be approxi- 
mated by a square law: 

CO" 2 
v ~ - -  (2a) 

~ 

while for cr >> cry, equation 1 may be approxi- 
mated by a linear law 

v _  Co" (2b) 

If the growth spirals interact with each other 
to an appreciable extent, equation 1 must be 
modified by the inclusion of a factor E and 
becomes 

ECO'~ (O"~) 
v = tanh (3) 

The magnitude of ~ depends on the number of 
interacting spirals and the form of the inter- 
action but will not normally differ from unity by 
a large factor. 

Equations 1 to 3 were, in fact, derived for 
crystal growth from the vapour phase, in which 
case the motion of the molecules to the interface 
is much more rapid than diffusion over the 
crystal surface. In solution growth, BCF 
assumed that diffusion of solute through the 
boundary layer would be so slow as to provide 
the rate determining factor. In their treatment, 
growth is assumed to occur at kinks in a step 
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which forms part of a spiral, but without any 
diffusion in a direction parallel to the interface. 
Their treatment has been extended by Chernov 
[13], who pointed out that a spiral may degener- 
ate into layers which spread radially outwards 
from the spiral source. Chernov also assumes 
that surface diffusion is unnecessary and 
considers that the diffusional flow of particles 
through the boundary layer has the form shown 
in fig. 1. The points a, b, c . . .  represent steps at 

o. b 

Figure I Solute diffusion field near stepped surface of 
growing crystal, after Chernov [13]. 

the boundaries between successive layers of 
which a cross-section is shown. The expression 
for the growth rate given by this treatment is 

act (4) 

where A and B are temperature-dependent 
parameters, 3 the thickness of the boundary 
layer, a the inter-atomic separation and ee a 
critical supersaturation. As in the BCF theory, 
equation 4 reduces to a square law at low values 
of  ~r and a linear law for high ~r, but it may be 
represented over a wide range of ~ by the 
approximation 

v oc ~ (5)  

where the power rn varies with ae and 3 but has a 
value of about 1.65. 

The application of the BCF theory to solution 
growth has been considered in detail by 
Bennema [14]. He arrived at a law of the form of 
equation 3 and stressed the importance of 
surface diffusion both in his theoretical treat- 
ment and in accounting for his experimental 
observations. 

In a recent paper, Gilmer et al [15] gave a 
more general treatment of growth from solution, 
including simultaneous volume and surface 
diffusion. Their expression for the growth rate 
includes contributions from volume diffusion, 
adsorption, surface diffusion and entry into a 
growth step. Like Bennema, they conclude that a 

better fit to experimental data is obtained if 
surface diffusion is included. 

Brice [16] has given a generalised treatment of 
crystal growth from solution including mechan- 
isms which do not rely on screw dislocations. 
The additional cases which he considers are an 
atomically rough surface on which growth may 
occur randomly, rather than at specific sites on 
the edge of a step, and the original postulate of 
two-dimensional nucleation. The growth rate is 
given by the general expression 

v = F c~ '~ T ~' exp ( -  G/T) exp (nH/c~T) (6) 

where F, G and H are constants and the values of 
m, n and p are listed in table I for the various 
modes of growth. (The parameter N in table I 
represents the number of molecules in a typical 
nucleus.) 

T A B L E  I Parameters in equation 6. 

Type  o f  interface m n p 

R o u g h  1 l 0 
Fla t  wi th  (a) large nuclei v --+ 0 2/3 2/3 1 

(b) large nuclei v ~+ oo 0 0 0 
(c) small  nuclel  v -> 0 1 4- N/3 0 0 
(d) small  nuclei v -+ ~ 1 4- N 1 0 

F la t  wi th  screw dis locat ions  
( a ) ~ <  ~1 2 2 0 
(b) ~ > al 1 I 0 

A comprehensive review of the theory of 
crystal growth from solution has been given by 
Parker [17], who discusses in greater detail 
many of the points outlined above. 

3. Experiments on Aqueous Solutions 
Experimental data, which may be used to check 
the validity of the theories of solution growth 
outlined above, are available mainly from 
measurements on aqueous solutions at tempera- 
tures in the range from about 20 to 80~ The 
most important measurements are those of  the 
growth rate as a function of the relative motion 
between the crystal and the solution and as a 
function of the supersaturation. 

3.1. Growth Rate Determinations 
If the rate of growth of crystals is determined to 
any extent by volume diffusion through the 
boundary layer, it will vary if the crystal is 
rotated or if the solution is made to flow across 
the crystal. This relative motion between the 
crystal and the solution decreases the thickness 
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of the unstirred layer and so will increase the rate ao- 
of crystal growth. 

A typical result for the variation of growth 
rate with solution velocity for a stationary 
crystal is shown in fig. 2a, which is taken from. ~6o- 
the data of Cartier et al [18]. The growth rate is ~_ 
seen to increase rapidly as the solution flow rate -2 

uJ 40- is increased from zero, after which it approaches <~ 
a steady value at high values of the flow rate. It ~" 
is normally assumed that the thickness of the ~- 
boundary layer becomes negligible when the flow ~2o- 
rate exceeds some critical value and the rate of 
growth is then determined by the mechanism of 
particle integration. Carlson [19], by analogy o 
with the equivalent heat flow problem, concluded o 
that the boundary layer thickness 8 is propor- 
tional to u -~, where u is the solution flow 
velocity. This result is in reasonable agreement s 7 
with the data of Hixson and Knox [20], who 
report v oc u ~ and of Mullin and Garside [21 ], 
whose results give a power of 0.65. - 6 

Similar results are obtained when the crystal ~ ! 
is rotated in a static solution, as shown in fig. 2b. / 
The data in this case were obtained by Coulson ~-4!, 
and Richardson [22] on sodium thiosulphate. 
The thickness of  the unstirred layer may be 
approximated by an expression given by Burton, o e 
Prim, and Slichter [23] ~ 2 

3 _ 2 % D~A v~ oJ -~ (7) 

where D is the diffusion coefficient, v the kine- o o 
matic viscosity and o~ the angular velocity of Ib) 
rotation of the crystal. A linear dependence of 
the growth rate v and m~ is found for curve (i) of 
fig. 2b, in agreement with equation 7. 

If  the rate of crystal growth is determined 
purely by solute diffusion through the boundary 
layer, the rate at which a plane interface at 
x = 0 will advance will be given by 

~, = - ( 8 )  
P 00~0 

where p is the density of the crystal, D the 
effective solute diffusion constant and (Sn/Sx)= =0 
the solute concentration gradient normal to the 
interface. Assuming that the concentration 
gradient is uniform over a layer of thickness 8, 

D ns - -  ne Dnecr 
v - = - -  (9) 

p 8 p8 

where ns is the solute concentration in the bulk of 
the solution and ne that at the interface, which 
will be equal to the equilibrium concentration in 
diffusion-controlled growth. A plot of  the growth 
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Figure 2 (a) Dependence of growth rate of citr ic acid on 
solut ion f low speed, after Cart ier et al [18]. (b) Dependence 
of growth rate of sodium th iosu lphate  on crystal rotat ion 
rate, af ter Cou lson  and Richardson [22].( i)  An = 1.5 g/100 
g water;  (//) /In = 1.0; ( i i i ) / In = 0.5. 

rate versus the supersaturation cr (=  (ns - ne)/ne) 
should therefore be linear if the assumptions 
made are valid. A linear variation may, therefore, 
result from either diffusion control or from a 
mechanism of particle integration such as that 
described by equation 2b. The two mechanisms 
which give rise to a linear law may be distin- 
guished experimentally by the dependence on 
relative motion in the case of diffusion control. 

A linear variation is found experimentally for 
a number of crystals. For example, Rumford and 
Bain [24] noted a linear dependence of growth 
rate on supersaturation in the growth of NaC1 in 
the range 52 to 73~ The activation energy of 
crystal growth over this range was found to be 
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similar to that of solute diffusion. Normally, 
however, discrepancies are observed between 
growth and dissolution rates at the same 
temperature, as in the data of  Garside and 
Mullin [25] for potash alum shown in fig. 3. 

0J 4-  

t~ 

Z 

o 

~ 2  
rY ' ROWTH 

o ~ ~ 1'~ 16 •o 
CONCENTRATION DIFFERENCE (xlO 3) 

(k 9 salt/kg solution) 

Figure 3 Growth and d isso lu t ion rates of  potash alum 
crystals of  s imi lar  size, af ter Gars ide and Mul l in [25], 

A difference between the growth rate and the 
dissolution rate under similar conditions indi- 
cates the importance of particle integration in 
solution growth. It is, however, difficult to 
separate the effects of diffusion and integration 
in order to ascertain the mechanism of particle 
integration. Brice [26] has proposed a method 
which may be applicable when the growth rate is 
measured as a function of the crystal rotation 
rate or solution flow speed. If  the actual concen- 
tration of  solute at the interface is ni, the 
velocity of growth may be assumed to depend on 
the mth power of the supersaturation, so that 

v = K (ni - ne) ~ (10) 

where K is a constant. Alternatively, in the 
steady state, the growth speed may be expressed 
in terms of the diffusion constant. Comparison 
with equation 9 gives 

O ns - ni 
v = - (11) 

p 

and elimination ofni  between equation 10 and 11 
then yields 

-~- -~- = ns -- ne (12) 

If the boundary layer thickness varies as ~o -~ 
as in equation 7, a plot of  v t / ~  versus voJ -~ at 
constant supersaturation should be linear. Alter- 
natively, if the crystal is stationary while the 

solution flows past a chosen face at a velocity u, 
a plot of  v t / "  versus v u - *  should also be linear. 
Such plots were used successfully by Brice to 
obtain the order m of the integration process. 

The other procedure which is widely used to 
determine the order, m, of the growth rate versus 
supersaturation variation relies on the assump- 
tion that, when oJ or u become very large, the 
diffusion step becomes negligible and the growth 
rate is a function only of the particle integration 
process. The measured velocities of growth are 
then plotted directly against the supersaturation, 
the data being taken from those regions, shown 
in fig. 2, where v is independent ofoJ or u. 

Experimental values of m for representative 
materials are listed in table II. Equation 12 was 
used to evaluate m for numbers 1 to 3 and 13 in 
the table, while the remaining values were 
obtained from measurements at high crystal 
rotation or solution flow rates. 

The values of  m are seen to be normally 
between 1 and 2, the exceptions (nos. 6 and 7) 
listed which have m = 2/3 are quoted by Brice 
as examples of growth with large nuclei growing 
laterally on a singular interface. The BCF 
theory, which predicts a transition from m = 2 
to m = 1 at a critical supersaturation at, can 
thus account for the majority of the experimental 
data if one assumes a wide variation in al for 
different materials. Of the work quoted in table 
II, perhaps the most detailed investigations are 
those of Bennema (nos. 9 and 10) and Mullin and 
co-workers (nos. 12, 15 and 16). Bennema 
concentrated particularly on measurements at 
low supersaturation (down to a ~ 10 -~) and his 
data on sodium chlorate are in good agreement 
with the form predicted by equation 1. The 
quantitative fit to this equation, together with the 
absence of a dependence of the growth rate on 
the degree of stirring in the solution, led 
Bennema to propose that the BCF surface 
diffusion model, rather than the volume diffu- 
sion model, is applicable to solution growth. 
The results of Mullin et  al  do not confirm the 
exact form of equation 1, and the data on 
A1K(SO4)2.12H20 [21 ] is, in fact, in better agree- 
ment with Chernov's value o f m  _~ 1.65 [13], 

Similarly, recent data of Garabedian and 
Strickland-Constable [29] on sodium chlorate at 
higher supersaturation values than those studied 
by Bennema, indicate a al.Ta dependence. These 
results were also obtained on well stirred 
solutions and are difficult to account for on the 
basis of existing theories. 
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T A B L E  II Particle integration data for aqueous solution growth. 

Material Author(s) m (in v oz ~m) Reference 

1. Sucrose van Hook 2 
f 2 T  < 71~ 

2. CuSO4.5H20 Hixson and Knox \ I T  > 71~ [26] 
) 3. CuSO4.5H~O McCabe and Stevens 2 (28 ~ C) 

4. Cyclonite Bransom, Dunning, and Millard 1 "~ 
5. Alums Belyustin and Dvoryakin 1 
6. Sucrose Kucharenko 2/3 [161 
7. K2Cr~O7 Todes and Litunovskii 2/3 
8. E.D.T. Kunisaki 1.66 
9. NaClO3 Bennema f2(a < 10 -~) \1(~ > 10 -~) [14] 

10. Potassium aluminium alum Bennema 1 [14] 
11. Itaconic acid Cartier, Pindola and Bruins 1 cr > 10 -8 [18] 
12. Potassium aluminium alum Mullin and Garside 1.62 [21 ] 
13. Sodium thiosulphate Coulson and Richardson 2 [22] 
14. NaC1 Rumford and Bain 2 (26 to 45~ [24] 
15. ADP and KDP Mullin and Amatavivadhana 2 [27] 
16. K2SO4 Mullin and Gaska 2 [28] 
17. NaC1Oa Garabedian and Strickland- 

Constable 1.73 [29] 

While the model of boundary layer diffusion 
followed by particle integration appears to be 
generally well confirmed by the aqueous solution 
data, its detailed application to a particular 
material is still rather uncertain. For  example, 
although the data of Mullin and Gaska [28] at 
high flow rates indicate a law for particle 
integration of the form v oc ~2, a plot of vu -~  

against v ~ is strongly non-linear, which indicates 
that one of the assumptions made in the deriva- 
tion of equation 12 is not valid. (The quantity 
vu  -~  in fact increases with v, which is clearly 
inconsistent with the form of equation 12). A 
similar discrepancy with this equation is also 
observed using the data of Cartier et  al  [18] on 
citric acid. 

The problem of detailed interpretation of data 
on solution growth rates has been stressed by 
Garside and Mullin [25]. They used dissolution 
data to calculate the diffusion coefficient which 
was then used to give the growth rate when the 
same solution became supersaturated. This 
procedure did not yield values in agreement with 
experiment, which indicates that a surface 
diffusion or desolvation step should be included 
in the growth process. The thermal activation 
energy of diffusion of K2SO4 in solution was 
determined by Mullin and Gaska [28] as 4.8 
kcal/mole, which clearly differs from a value of 
3.4 kcal/mole for the same parameter obtained 
from dissolution data. The corresponding energy 
for crystal growth was found to be 4.3 kcal/mole. 
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The complex behaviour indicated by these 
latter measurements has not yet been fully 
explained and has not been taken into account in 
the model discussed above. 

3.2. Observat ions  of Crystal Sur faces  
Additional information regarding the mechan- 
ism of particle integration in solution growth 
may be obtained from studies of the crystal 
surface features. Spiral growths have been 
observed on a large number of crystals [30] and 
have been generally assumed to provide direct 
evidence for the validity of Frank's screw 
dislocation theory. The spirals which are 
normally observed are in fact "macrospirals" of 
step height substantially greater than the unit 
cell. These features have been explained by 
Amelinckx et  a l  [31 ] as being due to a bunching 
of  steps caused by some periodic fluctuation in 
the source of the "microscopic spiral" as 
illustrated in fig. 4a. "Microspirals" having a step 
height of the order of unit cell dimensions can, 
however, be resolved by interference microscopy. 

A growth mechanism by the spreading of 
successive layers has also been reported in 
particular by Bunn and Emmett [32] who carried 
out continuous observations of the faces of  
growing crystals. Layers were frequently seen to 
originate from points near the centre of a crystal 
face and to spread outwards, often overlapping 
from one face onto an adjacent face. The thick- 
ness of the layers was of the order of 10 -5 cm, 
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(i#) Ovi 

Figure 4 (a) Formation of macrospiral, according to 
Amelinckx et al [31]. (b) Transition from spiral to layer 
growth, after Chernov [13]. The sequence (i)-(iv) shows 
successive stages of the observed disintegration of a 
spiral step. 

or several hundred unit cell edges. The authors 
suggest that the spreading of layers reflects the 
situation on the atomic scale, but that relatively 
thick layers tend to form because of the relatively 
rapid growth of high index faces. However, a 
layer mechanism does not necessarily contradict 
the screw dislocation theory since, as pointed 
out by Chernov [13], a spiral may degenerate 
into a system of concentric layers over a distance 
of a few cell edges. This transition from spiral to 
layer growth is illustrated in fig. 4b. 

The experimental data on solution growth 
may be strongly influenced by quite small 
concentrations of impurities in the solution. 
Buckley [33] gives a large number of examples of 
changes in crystal habit brought about by 
impurities due to their effect on the relative 

growth rates of various faces. The effects of these 
"poisons" have been considered in detail by 
Sears [34], who proposes that the modification 
of the growth process may occur in three ways. 
Firstly, the rate of motion of steps may be 
decreased. Secondly, the two-dimensional nucle- 
ation rate may increase and, finally, the macro- 
spiral may climb more steeply. The first two 
effects act in opposition and the dominance of 
one or the other will depend on the material 
and on the impurity used. Whatever the detailed 
mechanism, it is clear that small traces of 
impurities will have a major effect on the crystal 
growth rate and morphology only if growth 
occurs at a few active centres, rather than 
randomly as on atomically rough surfaces. 

3.3. Observation of the Boundary Layer 
The concentration distribution of solute ions in 
the boundary layer around a growing crystal has 
been measured by Berg [35] and others, using 
optical interference methods. It is found that the 
solute concentration is not constant over achosen 
face of the crystal, but is highest at the corners 
and lowest at the centre. This non-uniformity 
arises from the discontinuity in the flux of solute 
at the corners, and Boscher [36] has shown that 
the observed solute distribution can be explained 
by solving the diffusion equation in the two- 
dimensional case. 

In spite of this non-uniform supersaturation, 
the crystals are normally observed to grow evenly. 
However, if the solute is deposited too rapidly 
from the solution it may be expected that faster 
growth will occur at the corners or edges of the 
crystal and this is confirmed experimentally [37]. 

Goldsztaub, Itti, and Mussard [38] have also 
measured by an optical method the solute 
concentration adjacent to a growing crystal and 
shown that it has the form indicated in fig. 5, 
where the concentration across the boundary 
layer is plotted as a function of the distance x 
measured perpendicular to the interface. 

The equation of solute flow in one-dimension 
is normally written as 

a~n On ~n 
DUxx~ +V~x = 57 (13) 

and the second term may be omitted in the case of 
pure diffusion. The solution of this equation is of 
the form 

x 
n(x, t) = ni + (ns - ni) erf 2(Dt) �89 
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Figure 5 Solute concentration as a function of distance 
f rom the crystal interface, af ter Goldsztaub et al [38]. 

where the symbols have been defined above, and 
this solution indicates that a characteristic 
length, such as the boundary layer 3, will tend to 
vary as t ~ in the time-dependent case. Goldsz- 
taub et al draw attention to the fact that the 
factor (On/Ox)~=o, which determines the rate of 
crystal growth, will in general vary with time 
and that integration over some finite interval of  
time will normally be necessary if a measured 
growth rate is to be compared with theory. 
Agreement with theory in their experiments is 
not obtained using diffusion alone [38] and the 
discrepancy is attributed to convection in the 
solution. This conclusion implies that the second 
term in equation 13 should not be neglected, 
although its quantitative inclusion may be 
difficult in practical examples. 

3.4. Nucleation 
A discussion of the important factors in solution 
growth would be incomplete without some 
mention of the initial stage where nucleation of 
the crystal occurs. When a supersaturated 
condition is produced in a solution, the solution 
may remain in a metastable state or, depending 
on the supersaturation, nucleation may occur 
homogeneously or at specific sites. The initial 
particles, or embryos, formed on nucleation will 
grow provided that this growth decreases the 
free energy of the system. 

According to the theory of Becker and 
D~Sring [39], the free energy will contain 
contributions from the difference in volume 
between the crystal and the solution, the inter- 
facial surface energy and the strain associated 
with replacing part of  a liquid matrix with a solid 
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phase. The change in Gibbs free energy on 
formation of a cubic crystal of edge a may thus 
be written as 

A G - - - - a  ~ A G v +  6a 2y  + A G ~  

where A Gv is the difference in the bulk Gibbs 
free energy per unit volume between the solid 
and liquid phases, ~ the interfacial free energy 
per unit area and AGE represents the strain 
energy. It may be readily shown that, assuming 
AGE to be negligible, the energy will increase up 
to a critical size a* and then decrease, where 
a* = 4y/AG,,. 

Kingery [40] discusses the case of precipita- 
tion under steady state conditions. By taking the 
rate at which nuclei of critical size are formed 
and the rate at which atoms join each nucleus, he 
arrives at an expression for the nucleation rate of 

where N* is the number of atoms adjacent to the 
surface of  a nucleus, AG* is the value of  
the Gibbs free energy associated with a*, N 
the molar concentration of  solute and AF]) the 
activation energy for diffusion of solute atoms. 
This expression is given by Cobb and Wallis [7], 
in terms of the supercooling, as 

I - ~ -~2  exp - z (15) 

where C 1 and C2 are parameters which depend on 
the system considered. 

In crystal growth experiments, the important 
parameters are the supersaturation required to 
produce the initial nucleation, and the difference 
between this quantity and that required for 
subsequent crystal growth. Few examples have 
been given of comparative data for the nucleation 
rate and the crystal growth rate versus super- 
saturation, but data for K~SO4 have been given 
by Mullin and Gaska [28] and are shown in 
fig. 6. The nucleation curve may be fitted 
approximately to equation 15, although the 
authors point out that a better fit is obtained for 
the part of the curve where appreciable nuclea- 
tion occurs by an equation of the form 

I = const a ~ 

The results indicate that nucleation is negligible 
below a supersaturation of 0.1, beyond which it 
increases very rapidly. Crystal growth occurs at 
supersaturations well below this value and 
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Figure 6 Growth and nucleation rates of potassium sul- 
phate, after Mullin and Gaska [28]. 

nucleation could be neglected if growth were to 
take place at a supersaturation of, say, 0.02. 

4. Exper iments  on F lux Growth  
4.1. The Nature of Fluxed Melts 
The techniques of flux growth are similar to those 
used in crystal growth from aqueous solutions, 
but severe limitations are imposed by the 
relatively high temperatures and by the extreme 
reactivity of most of the fused salts used as 
fluxes. 

It is in general difficult to specify a priori the 
ideal solvent for crystal growth of a given ma- 
terial. Desirable physical properties of fluxes 
include a low volatility and low melting point, but 
the chemical specifications are normally limited 
to high solubility for the crystal constituents, low 
solubility for platinum or some alternative 
cruciblematerialand the possession of a common 
ion with the crystal in order to minimise the 
number of constituents in the melt. Clearly, also, 
the flux should not contain ions which readily 
enter the crystal lattice as impurities. 

In practice the flux is normally chosen by a 
trial and error procedure, taking into account 
previous experience.White [41] has proposed that 
the most widely used fluxes may be classified into 
four groups: 

(a) Simple ionic salts, such as NaC1 or LiF. 
These are the best understood of all fused salts, as 
extensive investigations have been made of their 
properties. They are, in fact, not used very 
frequently in crystal growth, probably because of 
their low solvent power for many materials of 
interest. The outstanding exception is the use of 
potassium fluoride in the growth of barium 
titanate [1 ]. 
(b) Polar compounds, such as Bi203 and lead 
compounds. PbO [42], PbO/PbF2 mixtures [2] 
and PbF2 alone [43] have probably been used 
more widely than any other fluxes in spite of 
their high volatility and relatively high toxicity. 
They exhibit a large increase in electrical 
conductivity on melting and PbO has a conduc- 
tivity of about 1 ohm cm at its melting point [40]. 
They are thus highly ionic, although complex 
ions appear to be formed. White and Brightwell 
[43 ] have found evidence for the existence of ions 
such as PbF +, PbF~-, A10 + and A102- in 
solutions of Al~O3 in PbF2 while Nielsen [2] has 
found a phase YOF in solutions of yttrium iron 
garnet in PbO/PbF2. 

The reasons why these lead compounds are 
such effective fluxes are not fully understood. 
(c) Network forming liquids, such as borax and 
BaO-B203 compounds [45]. Borate fluxes have 
also found wide application, mainly on account 
of their low volatility which makes them 
particularly suitable for experiments in which a 
seed crystal is introduced near the surface of the 
solution [46]. B~O8 has a very high viscosity, 
some 105 poise at its melting point of 450~ [44], 
and is not suitable by itself as a flux because of 
the low degree of convective mixing in very 
viscous liquids. The addition of metal oxides, 
such as those of the alkali metals and alkaline 
earths, greatly lowers this viscosity by breaking 
up the rigid O-B-O chains, although the borates 
are not ideally suited to experiments which rely 
on spontaneous nucleation. 

A detailed study of solutions of NiO in various 
alkali borate liquids has been made by Berkes 
and White [47] and this forms one of the most 
valuable contributions to our understanding of 
the chemistry of flux growth. Accurate liquidus 
curves were determined by a quenching method 
and the results compared with that of an ideal 
solution in which the solubility n obeys the 
relation 

n = n~o exp (-- r (16) 

where noo and r the heat of solution, are 
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independent of temperature. The observed 
departures from ideatity were attributed to 
clustering of the boron and oxygen atoms. At 
low temperatures, 8.5 B~O~ units were calculated 
to be bonded together, the size of the cluster 
decreasing with increasing temperature and 
falling to 2 B~O~ units in sodium borate at 
1120~ and 3 B203 in potassium borate at 
1168~ These clusters exclude the Ni 2+ ions, 
which are therefore weakly bonded in large 
interstitial sites in the boron-oxygen network. 
The energy required to free the NF + ions from 
the solution during crystal growth is therefore 
small, so that growth can occur at low super- 
saturation. This weak bonding between the 
crystal constituents and the liquid appears to be a 
desirable property since growth can proceed at 
low supersaturation, with little nucleation. 
(d) Complex forming liquids such as the tung- 
state and molybdate fluxes. While the applica- 
tion of these fluxes is not widespread, their use 
does appear to contradict the specification of 
weak bonding between flux and crystal constitu- 
ents proposed by Berkes and White. Kunnmann 
et al [48] described their use of polytungstate 
fluxes in terms of Lewis acid-base theory. The 
basic oxides which form the desired crystal are 
dissolved by the Lewis acid WO8 (an electron 
pair acceptor) and then precipitated by the Lewis 
base Na2WO4 (an electron pair donor). The 
crystal growth process utilises the dissociation 
with temperature of sodium pyrotungstate, 

increasing T 
Na,W,O7 ', > Na2WO4 + WO3 

decreasing T 

The dissolution and growth of an oxide MO 
takes place by a reaction of the form 

increasing T 
xMO + yNa2W~O7 ) - -  >- x(MO.nWOs) 

decreasing T 

+ (y - nx)Na2W20 7 + nx NazWO4 

These principles appear to have been verified by 
the extension of this model to grow a range of 
vanadium spinels such as Col+e V2-80~ by 
electrolysis of the fluxed melt [49]. The appli- 
cation of this flux system to many materials sug- 
gests, however, that the MO.nWO3 complex may 
not be bonded together strongly, otherwise crys- 
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tals of good size and quality would not be ex- 
pected for such a wide range. WO a and MoO~ 
are effective solvents in their own right. 

4.2. Comparison between Aqueous Solution 
and Flux Growth 

In view of the differences between the various 
fluxes used successfully for crystal growth, 
generalisations about their properties are diffi- 
cult. Most fluxes are mainly ionic in character, so 
their general behaviour may be expected to 
conform to that described by Bloom and Bockris 
[50]. Such properties as surface tension are 
similar to those of water, while density values are, 
on average, somewhat higher and the viscosity 
of a flux is typically about 10 centipoise [7]. The 
diffusion coefficients of solute ions in simple 
ionic liquids are normally found to be of the 
order of 10 .5 cm 2 s -1, which is comparable 
with the values measured for ions in aqueous 
solutions. 

The conceptual similarities between flux and 
aqueous solution growth suggest that the 
description outlined in section 3 should be 
applicable to flux growth. The evidence for this 
assumption is extremely small as very few 
experiments of real significance have been 
performed with a view to establishing the 
mechanism of crystal growth from a flux. 

So far as the authors are aware, the variation 
of growth rate with supersaturation has not yet 
been reported for any system, probably because 
of the experimental difficulties of measuring the 
growth rate and the temperature distribution in 
the melt. Since it is not possible to observe the 
growing crystal interface directly, the growth 
rate may only be monitored continuously by a 
thermogravimetric method. Thermocouples may 
be inserted in a seed crystal or into the melt itself, 
but these tend to disturb the temperature 
distribution, and the thermocouples themselves 
may become contaminated. 

Only one determination of the variation of 
growth rate with rotation rate has been reported 
[3], for yttrium iron garnet, and the result is 
similar to those shown in fig. 2 for aqueous 
solutions. The growth rate v is independent of 
crystal rotation rate if this is greater than about 
50 rev./min while v varies approximately as oJ § 
for low values of the rotation rate o), although 
there are too few points on the graph to permit a 
quantitative interpretation. The experimental 
technique used in this experiment is not ideal, 
since the growth rate was determined over a 
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range of temperature during cooling rather than 
under isothermal conditions. 

One difference between flux and aqueous 
:solution growth, pointed out by Cobb and 
Wallis [7], is that the supercooling will normally 
be much higher in the former case. If  the 
Helmholtz free energy for crystal growth at 
temperature iv is written as 

AF = ~AT 

where q~ is the heat of solution and AT the 
supercooling, then an increase in T from say 
300 to 1500 K will require AT to be increased by 
a factor 5 to maintain the same free energy, 
provided that ~ remains constant. 

The supercooling required to maintain the 
same supersaturation must be increased by an 
even larger factor. For  an ideal solution (equa- 
tion 16), the supersaturation will be 

An ~o A r  
cr - - -  (17) 

n R T 2 

In practice the temperature difference across a 
crucible during a flux growth experiment is 
typically 1 to 20~ an order of magnitude 
higher than the values used in aqueous solutions. 
The values of Ai t used are, however, probably 
lower than those indicated by equation 17 since 
is often higher for refractory oxides and similar 
materials grown from the flux than for materials 
grown from aqueous solutions. 

4.3. Surface Studies 
Since evidence from growth rate determination is 
almost totally lacking, the main body of data 
concerning particle integration in flux growth is 
obtained from observations by optical micro- 
scopy of  the surfaces of as-grown crystals. This 
evidence is rather indirect since it relies on the 
validity of  some postulate regarding the origins 
of  the observed features, and dynamic observa- 
tion of a growing crystal face is not possible 
since the melts are opaque. However, such 
studies have proved valuable not only as an 
indication of the growth mechanism, but also 
because of the information they provide regard- 
ing the source of imperfections in the crystals, as 
will be discussed in section 5. 

One of the most detailed studies of the surface 
features of  flux grown crystals is that of Lefever 
and Chase [51] on garnets grown from PbO- 
PbFe fluxes. The initial stage of  growth in the case 
of  spontaneously nucleated crystals was found 

to be highly dendritic as might be expected if, as 
in the example shown in fig. 6, a high super- 
saturation is required for nucleation compared 
with that for subsequent growth. The dendrites 
grow in the fast-growth directions and this stage 
must be followed by a period during which the 
region between the dendrite arms is filled in 
The rate at which the filling in takes place will 
normally be most rapid at the ends of the arms 
where the supersaturation is high. If  the filling 
rate is low, the faces of the growing crystal will 
be terraced until the filling is complete and the 
equilibrium face of the crystal is established. If  
growth is terminated in the terraced stage, 
hopper crystals are formed as reported by 
Lefever and Giess [52]. Hopper crystals will be 
more likely if the initial dendrites are of  large 
dimensions and so incorporate a large fraction of 
the available solute. 

If the crystals attain their equilibrium faces, 
the features observed will depend on the 
temperature of growth as well as on the composi- 
tion of the crystal. On garnet crystals grown at 
higher temperatures, Lefever and Chase [51] 
noted layers spreading across a crystal face from 
points at an edge or corner of the face. The 
layers resulting from this corner and edge 
nucleation are normally curved in a direction 
concave from the point of origin, as indicated in 
fig. 7. This curvature arises because the growth 
rate increases with distance from the centre of 
the face since the supersaturation increases 
towards the edges. 

Figure 7 Growth steps on a (211) face of yttr ium iron 
garnet, fol lowing Lefever and Chase [51]. 

When crystals were grown at lower 
temperatures (below about 1000 ~ the 
characteristic features observed were numerous 
growth hillocks. In crystals grown below 900~ 
the hillocks became fewer in number and fre- 
quently a single growth feature was seen to 
dominate a whole face. The change in appear- 
ance of the surfaces may have been due to a 
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decrease in supersaturation with fall in tempera- 
ture at a constant cooling rate. The growth 
process appeared to be by a spreading of layers 
outwards from the growth hillocks, the step 
heights varying from less than 5 nm near the 
centre of the hillocks to several hundred nm 
towards the edges of a crystal face. On the (211) 
faces, Lefever and Chase saw a more irregular 
pattern of steps, also originating from a point on 
the crystal face. 

For the present discussion, the most important 
question concerns the nature of the growth 
centres. Etching of the crystal surfaces was 
found to result in an oriented etch pit at the 
centre of each hillock, indicating the presence of 
a dislocated region. On some crystals which 
were grown very slowly, growth spirals were 
observed and so the evidence appears strongly to 
favour a growth mechanism based on screw 
dislocations. 

Similar surface features to those of the 
garnets were observed by Chase [53] on In203 
crystals grown from a PbO-B2Oa flux. The 
crystals which were removed from the furnace at 
1100~ exhibited growth steps resulting from 
corner and edge nucleation, these steps showing 
a similar curvature to those on the garnets. 
Crystals grown at a lower temperature exhibited 
growth hillocks with small steps parallel to the 
(110)  directions in the (100) equilibrium 
surface. The initial stage of growth was again 
highly dendritic. 

Quon and Sadler [54] also investigated the 
surface features of yttrium iron garnet crystals, 
grown in this case from BaO-B~O~ fluxes. The 
majority of features could be classified into the 
categories described by Lefever and Chase. The 
layers were again mainly nucleated at corners or 
edges of the crystals and concave from the point 
of origin, but exhibited a greater tendency to 
break up into a multi-layered structure. Hillocks 
were observed on both (1 10) and (21 1) faces, 
being either in the form of stacked layers of 
rhombic units or multiple thin circular growths. 
The authors saw only one growth spiral. 

A wide variety of flux grown crystals was 
examined by Sunagawa [55] using a phase 
contrast microscope with a height resolution of 
0.2 nm. His results generally confirm the 
observations reported above, although Suna- 
gawa refers to different "types of spirals". 
Spirals of monomolecular step were seen on 
magnetoplumbite PbO.6Fe2Oa, on F%O~, AlcOa 
and yttrium iron garnet. The features observed 
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on spinel were pyramidal in shape, but could be 
seen under high magnification to be formed from 
layers spreading from a central point. Growth 
hillocks were observed on AI~O3 crystals, together 
with pyramidal growths. Curved layers, similar 
to those observed on the garnets, could be shown 
in some cases to be formed from a large number 
of thin layers. 

Our own investigations of a number of ferrite 
spinel and garnet crystals by optical and scanning 
electron microscopy have also revealed growth 
hillocks and, particularly, layer structures. Fig. 8 
shows a pair of hillocks on the equilibrium (11 1). 
face of a nickel ferrite crystal grown by gradient 
transport in a BaO-BizOa-B203 flux at 1230~ 
The form of these hilllocks is similar to those 
seen by Quon and Sadler (their fig. 7) and by 
Sunagawa (his fig. 5). The large depth of focus 
of the scanning electron microscope clearly 
reveals that the hillocks are built up of thin 
circular layers which interact to form sharp lines 
at 120 ~ to each other. 

The features which were observed most 
frequently were layers, with steps of the order of 
10 .5 cm in height. Fig. 9 shows the corner of a 
single step on the surface of a magnetoplumbite 
crystal, with a smaller step ending at the corner. 
On all our crystals the steps normally had 
straight edges and appeared to coincide with a 
low index face. The appearance of these layers 
suggested the mode of growth observed by Bunn 
and Emmett [32], with layers originating at some 
point on the surface of the crystals and spreading 

Figure 8 Growth hillocks on (111) face of nickel ferrite. 
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Figure 9 Growth step on magnetoplumbite crystal. 

Figure 11 Depression at centre of (111) face of nickel 
ferrite. 

Figure 10 Triangular growth layers on (1 11) face of l ithium 
ferrite. 

outwards. The clearest example of this mode of 
growth is seen in fig. 10 in which a (1 1 1) surface 
of  lithium ferrite is shown. This crystal was 
grown by slow cooling from a PbO-PbF2-B203 
flux [56]. The layers exhibit a triangular shape 
with edges parallel to those of the crystal face. 
Successive layers appear to spread from a central 
point on the feature, although some inhibition 
must apply to growth in one direction. The 
height of the larger steps is about I0 -5 cm and 
this is presumably due to bunching of smaller 
steps. 

No evidence was found for nucleation of layers 
at the corners or edges of a crystal face although 
the depression at the centre of a (1 1 1) face of  
nickel ferrite (fig. 11) may indicate preferential 
growth of layers nearer to the edges of the face. 

On the garnet crystals which were examined 
the only clear features were the single "window 
frame" patterns due to a single growth centre 
[51]. The vicinal faces of these features are 
inclined at a very small angle to a plane interface 
and their detailed structure could not be 
discerned by scanning electron microscopy. 

It may be concluded from the various studies 
of flux grown crystal surfaces that most faces are 
atomically flat, with growth occurring prefer- 
entially at specific sites. Atomically rough 
surfaces have been reported [41] but they occur 
extremely rarely. The actual mechanism of 
crystal growth is probably based on screw 
dislocations, although pure spirals are seldom 
seen. The most likely mode of stable growth 
under conditions of low supersaturation is by a 
spreading of layers from a few points on the 
crystal face, probably originating by the 
mechanism illustrated in fig. 4b. 

4.4. The Velocity of Growth 
According to the considerations outlined in the 
foregoing discussion, the factors which are most 
likely to determine the rate of advance of a 
growing crystal face are boundary layer diffusion 
and particle integration, the latter being based on 
a screw dislocation mechanism. It should 
therefore be possible to predict approximate 
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values for the growth rate in the limiting cases 
where only one stage is effective. 

Boundary layer diffusion control of the growth 
rate is most likely in a static solution, in which 
case the growth rate will be given by equation 9, 
namely v = Dcrne/p~. Taking D --- 10 -6 cm 2 s ~z 
as in aqueous solutions and in simple ionic melts, 
p " 5 g cm -3, ne -~ 1 g cm -3 (representing, say, a 
25 ~ solubility in a solution of density 4 g cm-3), 

= 10 -~ cm and cr ___ 5 x 10 -3 (a typical value 
for slow growth from aqueous solutions), we 
obtain a value v ~_ 10 -6 cm s -1. This value 
indicates that a 1 cm thickness of crystal will 
take about ten days to grow, which is in agree- 
ment to the order of magnitude with the period 
used experimentally for flux growth in unstirred 
crucibles. 

When a seed crystal is rotated rapidly, it may 
be expected that a stage will ultimately be 
reached where the growth rate is determined by 
the particle integration process. If  it is assumed 
that the growth rate is then given by the BCF 
surface diffusion theory (equation 1), the value 
of  v will clearly depend on the choice of the 
parameters C and ~1. Since experimental data 
which will allow evaluation of these parameters 
is not available for any flux system, it is again 
necessary to use values for aqueous solutions. 
The mean values used by Bennema [14] are 
C = 10 -4 cm s -1 and cr 1 = 10 -8. Comparison is 
then possible with experiments such as those of 
Smith and Elwell [57] in which the growth of 
nickel ferrite by gradient transport was effected 
using a supersaturation of cr ~ 0.04. Substitu- 
tion gives v _~ 4 x 10 .6 cm s -~, which is in good 
agreement with the observed value of 0.2 mm/h 
or 6 x 10 -6 cm s-L (The growth rate quoted by 
Laudise [3] at high crystal rotation rates is 
0.06 mm/h or 2 x 10 .6 cm s-1.) 

The estimated growth rates both for diffusion- 
controlled and particle integration-controlled 
growth are clearly valid only for order-of- 
magnitude estimates and so a comparison of the 
values predicted in the two limits is of little 
value. The values quoted do appear, however, 
to be typical of those used experimentally. 

In these estimates and throughout the above 
discussion, the liberation of the heat of crystal- 
lisation has been neglected. That this heat is 
unlikely to be of great importance in determining 
the rate of growth may be shown by considera- 
tion of  an example. The heat of solution of nickel 
ferrite in barium borate is found to be 73 kJ/mole 
[58]. With the growth rate of 6 x 10 .6 cm s -z 
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given above, the rate of liberation of heat is o f  
the order of 10 -2 J cm -~ s -1. If  the crystal has a 
thermal conductivity of the order of 10 -1 J cm -1 
s-l~ -1, a typical value for refractory oxides at 
1200~ the heat generated will be immediately 
conducted away through the crystal if the 
temperature gradient is only 10-1~ cm -1. 
Since the actual temperature gradient is likely to  
be much larger than this value, and heat may also 
be removed by the solution, there appears to be 
ample justification for the assumption that 
growth is directly controlled by the solute 
concentration. 

5. Crystal Imperfections 
The imperfections which occur most commonly 
in flux grown crystals are flux inclusions, stria- 
tions, dislocations and substitutional impurities. 
The incorporation of substitutional ions depends 
directly on the choice of flux and the purity of the 
chemicals used, and may normally be reduced to 
a tolerable level by the use of a suitable flux. It is 
also important that the flux should not attack 
platinum appreciably, since inclusions of plati- 
num metal may be found in flux grown crystals 
[59], and rhodium or chromium from the cruci- 
bles may also be present as impurities. 

Since flux growth occurs at temperatures well 
below those of the corresponding pure melts, the 
concentration of vacancies and interstitials will 
be lower than in melt grown crystals. Moreover, 
since the temperature gradients are normally 
lower, the flux grown crystals may have lower 
dislocation densities than those produced from 
the melt, apart from the outstanding exceptions 
such as pulled silicon. 

The defects which are likely to be the most 
troublesome are flux inclusions and striations. 
It is probable that these defects may be reduced 
considerably by careful attention to the experi- 
mental conditions and the remainder of this 
section will be devoted to considerations of the 
incidence of these defects. 

5.1. Flux Inclusions 
The incidence of flux inclusions may often be 
directly related to the mode of growth, as 
revealed by observations of the crystal surfaces. 
The initial dendritic stage of growth by spon- 
taneous nucleation occurs, as discussed in section 
4.3, under condition of high supersaturation and 
it is probable that the rapidly growing dendrite 
arms will join up to trap particles of the flux. 
Examples of crystals which exhibit a dendritic 



M E C H A N I S M S  O F  C R Y S T A L  G R O W T H  F R O M  F L U X E D  M E L T S  

initial stage with a high concentration of trapped 
flux have been found by Lefever, Chase, and 
Torpy [60] and White [4]. If the supersaturation 
for nucleation is not high compared with that for 
subsequent growth, many nuclei will tend to 
form on cooling and the dendrites will reach only 
small dimensions. It is frequently observed that, 
when a slow cooling experiment results in many 
small crystals, the concentration of inclusions is 
not so high as at the nucleation centre of larger 
.crystals. Such a decrease in flux inclusion 
concentration with increase of nucleation was 
found by Chase and Tippins [61 ] on adding MgO 
to a fluxed melt used to grow In~Oa crystals. 
Conversely, if nucleation is restricted to a single 
site as in the experiments of Scheel and Schulz- 
Dubois [62], the initial stage is likely to be highly 
.dendritic. However, this dendritic region then 
occupies only a small fraction of the crystal and 
many specimens can be cut from the remainder. 

The dendritic stage may be eliminated by seed- 
ing provided that the supersaturation is not too 
high when the seed is introduced. The seed 
should preferably have equilibrium faces other- 
wise the initial growth stage may again contain a 
high concentration of inclusions. White and 
Brightwell [43] found, in the growth of A12Oz 
crystals, that seeds cut parallel to the c-axis 
became serrated by the formation of the (012) 
and (104) habit faces, with layers of flux being 
incorporated in the valleys between the serra- 
tions until the crystals attained their equilibrium 
habit. Layered inclusions are also likely to occur 
in crystals which exhibit hopper faces. 

Inclusions in equilibrium faces will depend 
upon the mode of growth and may be absent if 
the growth is slow and uniform. If growth occurs 
by a layer mechanism with corner and edge 
nucleation, inclusions may be formed in the 
centre of the face between the advancing layers if 
these spread too rapidly. Such inclusions due to 
incomplete layer formation near the centre of the 
crystals have been observed in both garnet [60] 
and In~Oa crystals [61]. 

The types of inclusions listed above are 
relatively easy to recognise and thus to eliminate. 
However, even when crystals are grown under 
"good" conditions and exhibit regular equi- 
librium faces, flux inclusions are frequently 
present. These may not be detectable by optical 
microscopy but are revealed byX-ray topography 
as shown by Belt [63] for the (1 1 1) faces of 
lithium ferrite. It is therefore important to know 
the conditions under which an equilibrium face of 

a crystal will grow without the development of 
instabilities, which will normally result in flux 
inclusions. Attempts to obtain a limiting condi- 
tion for stable growth will be discussed in the 
next section. 

5.2. Condition for Stable Growth 
The condition for stable growth of a plane inter- 
face in the case of crystallisation from a melt 
containing impurities has been known for some 
time and is well confirmed by experiment. 
Rejection of impurities by the growing crystal 
interface results in a depression of the liquidus 
temperature in the region immediately in contact 
with this interface; any protuberances on an 
otherwise smooth interface will thus encounter a 
region of higher supercooling and will tend to 
grow more rapidly than the surrounding inter- 
face. This constitutional supercooling may be 
avoided ira steep temperature gradient isimposed 
on the melt at the interface, and the condition for 
stable growth may be written [64] 

dT mni(1 - K) v 
d x  2 K D  (18) 

where m is the fractional change in liquidus 
temperature per unit concentration, ni the 
impurity concentration, K the partition coeffi- 
cient, v the growth rate and D the impurity 
diffusion coefficient. Mullins and Sekerka [65] 
included the effect of thermal conduction through 
the crystal and obtained a more general stability 
condition 

K~ dT + ~ > 
KS + KL S KS + KL L 

mnj(1 - K )  v (19) 
K D  

where x is the thermal conductivity and the 
suffixes S and L refer to the solid and liquid 
phase respectively. If the temperature gradient in 
the solid is expressed in terms of that of the 
liquid, it is found possible to have constitutional 
supercooling without instability if the growth 
rate is sufficiently slow. 

White [4] has pointed out the similarity be- 
tween the case of a doped melt and flux growth, 
since the latter case solvent must be rejected at 
the melt interface, and Tiller [66] has applied 
equation 18 directly to flux growth. However, as 
has been argued above, the growth rate in this 
case will depend on solute rather than on thermal 
transport and it is therefore instructive to 
consider directly the condition for the absence of 
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CRYSTAL 
\ \ \ \ \ \ \ \ \ \ \ \ . _ _  

SOLUTE CONCENTRATION 

Figure 12 Variation of solute concentration with distance 
from crystal interface, in simplest case. 

constitutional supersaturation, i.e. that the 
supersaturation does not increase with distance 
from the interface. 

Since crystals growing with a stable 
morphology from fluxed melts are bounded by 
habit faces, we consider the case of a planar 
crystal face. The more complex problems of 
growth anisotropy and habit modification cannot 
be treated quantitatively until a better under- 
standingof theplane interface has been obtained. 
The growth rate is assumed to be slow compared 
with the diffusion rate so that the interface can be 
considered static. In the simplest case where 
growth is determined by volume diffusion 
through the boundary layer, the distribution of 
solute in the absence of convection will have the 
form shown in fig. 12, with the concentration at 
the interface equal to the equilibrium value at the 
interface temperature T. With this approxima- 
tion, the solute gradient will be 

dn ns - ne 
dx 3 (20) 

If the solution is ideal, the equilibrium concentra- 
tion will vary with temperature as ne oc exp 
( - d ? / R T )  so the variation of the equilibrium 
concentration ahead of the interface will be 

dne ne~ dT 
d'---~ "~ R T  2 dx  (21) 

where dT/dx is the variation with distance from 
the interface of the temperature of the solution. 

The condition for the absence of constitutional 
supersaturation is thus that, at the interface, 
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dn dne 
dx < d x  (22) 

or, on substitution from equations 20 and 21, 

dT aRT S 
d--~ > r  (23) 

in which the supersaturation a has been written 
for (ns - ne)/ne. As in melt growth, therefore, 
this approach leads to the conclusion that the 
temperature gradient ahead of the interface 
should exceed a critical value. 

An alternative form is obtained by substituting 
for a from equation 9, which gives the critical 
temperature gradient in terms of the speed of 
growth as 

dT RT2pv 
d---x > CneD (24) 

If the values of these quantities from section 
4.4 are substituted into equation 24, with 
T = 1200~ the critical gradient is found to be 
of the order of 100 deg/cm. This value is 
unrealistically high, since good quality crystals 
may be grown in crucibles in which the tempera- 
ture gradients are very low. Moerover, if 3 is 
decreased by rotating the crystal, an even higher 
gradient would be required by equation 23 for 
stable growth and Hurle [67] has pointed out 
that convection will also tend to increase the 
value of dn/dx when crystals are grown by 
thermal gradient transport. In practice, convec- 
tion and seed rotation normally lead to improve- 
ments in crystal quality without any change in the 
imposed temperature gradient. 

In the other limit where the volume diffusion 
step tends to zero, the solute gradient dn/dx may 
be neglected and the equilibrium condition then 
becomes 

dT 
d--x > 0 (25) 

This condition and that of equation 24 indicate 
that the heat of solution should be removed 
through the crystal itself rather than through the 
solution. This situation is likely to apply when a 
cooled seed is used or when crystals grow by 
spontaneous nucleation on the walls of a crucible 
or on the surface of the melt. Examples are 
known, however, [68] where crystals of good 
quality have been grown in the centre of a 
solution and this is particularly the case for 
aqueous solutions to which the same theory 
should apply. Equation 25 is unsatisfactory in 
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that it does not predict a critical growth rate or 
supersaturation for stable growth. 

The failure of a constitutional supersaturation 
approach to predict a realistic condition for 
stable growth is presumably due to neglect of 
the stabilisation due to the surface energy of the 
crystal, since any perturbation represents a 
departure from an equilibrium face. Thus, as 
pointed out by Tiller and Kang [69], a protu- 
berance may not grow even if the local variation 
in supersaturation favours the development of 
this perturbation. 

An alternative approach to the problem of 
growth stability has been proposed by Brice [70]. 
Rather than a negative supercooling or super- 
saturation gradient ahead of a growing interface, 
he proposes that stable growth will occur if the 
gradient of the growth rate is negative, that is if 

dv 
d--x < 0 (26) 

Under this condition, a projection on an other- 
wise plane interface will grow less rapidly as it 
advances and so will tend to decay. The advan- 
tage of this approach is that particle integration 
may be included through the relation between 
growth rate and supersaturation. The resulting 
condition for stable growth from solution is 
rather complex and data for comparison with 
experiment is unfortunately not available for any 
example of flux growth. However, equation 26 
does produce the constitutional supercooling 
equation if the supersaturation is small and is 
thus open to the same criticisms made to 
equation 24. Moreoever, if the assumption is 
made that v is described by the BCF surface 
diffusion expression (equation 1), the only 
conclusion which may be reached is that dcr/dx 
must be negative, which corresponds to equation 
22. 

The main criticism that can be made of Brice's 
method is that it is one-dimensional and there- 
fore cannot describe the behaviour of a real 
protuberance. Shewmon [71] has given a treat- 
ment of the stability of a planar interface in 
solution based on the method of Mullins and 
Sekerka [72]. The stability condition is discussed 
in terms of sinusoidal perturbations of different 
wavelengths, since any perturbation can be 
described by a superposition of sine waves. If  the 
y-axis lies in the interface, a perturbation is taken 
to have the form 

x = E(t) sin oJy 

The perturbation causes local changes in the 
supersaturation at the interface which tend to 
increase the instability, but the resulting con- 
centration gradients along the y-axis tend to 
smooth out the sine wave. In the case of diffusion 
control, the rate of change of the amplitude ~ is 
given by 

- -  = oJe(1 - neI'oJ2/a) (27) 
v0 

Here v0 is the rate of growth of the interface at 
e = 0, G the solute gradient dn/dx at the inter- 
face and r '  = Oy/RT, where s is the molar 
volume of the crystal and y the surface tension. 
The condition for stable growth is that ~ < 0, or 

> (6/n~r)~ (28) 
The critical frequency is decreased, and the 
stability thus enhanced, by surface diffusion 
which will clearly tend to smooth out the 
perturbation. 

Shewmon also considered the case of interface 
kinetic control and concluded that the stability 
condition is unchanged although ~ is no longer 
given by equation 27. The condition represented 
by equation 28 predicts as expected that the 
stability will increase with increase in surface 
tension and with decrease in the solute gradient. 
Absolute stability (for all frequencies) requires 
that G = 0, which corresponds to our condition 
for interface kinetic control, represented by 
equation 25. 

All the treatments described fail to provide an 
expression for a maximum rate of stable growth, 
which could be compared with experiment. The 
derivation of such an expression should be the 
principal aim of future work in this area. Any 
realistic theory must take into account the 
stabilising effect of the habit faces and of surface 
diffusion. 

5.3. Striations 
Striations are periodic variations in the composi- 
tion of crystals due to changes in the relative 
concentration of the components or in the 
impurity concentration. They have been observed 
in a wide variety of materials by a number of 
authors, but their origin is still not clear. 

In yttrium iron garnet, Lefever et al [60] 
found that a banded appearance was due to 
finely divided inclusions about 0.1 Fm in 
diameter. They believed that divalent iron was 
involved in the observed striations since the 
effect could be reduced by growing the crystals in 
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an oxygen atmosphere or by reducing the 
concentration of silica in the melt. FeO is 
soluble in yttrium iron garnet at high tempera- 
tures but the solubility decreases with decreasing 
temperature and it would therefore precipitate 
out of the lattice on cooling. 

Chase [53] found a variety of striations in 
indium oxide crystals. Those in the innermost 
zone were very clear bright and dark bands, 
decreasing in width with distance from the 
growth centre. The intermediate zone showed 
large striations, up to 1 mm across, but having a 
fine structure. In the outermost zone these fine 
striations were absent but less well-defined 
variations in colour were observed. The various 
striations were associated with different modes of 
growth, being respectively dendritic layer growth 
with corner and edge nucleation, and spiral 
growth resulting in growth hillocks. Chase 
concluded that the striations could be correlated 
with fluctuations in the furnace temperature 
resulting from an imperfect controller and this 
conclusion was also reached by Chase and 
Wilcox [73]. 

Striations corresponding to variations in the 
Cr ~+ concentration were observed in the ruby 
crystals studied by White and Brightwell [43]. 
These were thought to arise because of preferred 
adsorption on different faces, giving rise to a 
series of sharp boundaries in some crystals cut 
parallel to the e-axis. 

If  the controller does not give rise to periodic 
fluctuations in the furnace temperature, stria- 
tions may still be present due  to convection in 
the melt. Temperature oscillations due to convec- 
tive motion in fluids are well known but their 
importance in crystal growth has not been 
appreciated until comparatively recently. Wilcox 
and Fullmer [74] showed that the temperature 
oscillations which occurred during growth of 
calcium fluoride from the melt could be correla- 
ted with regular fluctuations in the dopant 
concentration, and many examples of the 
correlation between normal oscillations and 
growth striations have now been reported [75]. 

The occurrence of temperature oscillations in a 
pure melt depends upon the Rayleigh number 

g a L 3 A T  
R = K v  (29) 

where a is the volume expansion coefficient, L 
the depth, K the thermal diffusivity and v the 
kinematic viscosity of the fluid and AT the 
temperature differences across it. Oscillations 
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occur if R exceeds a critical value, and turbulent 
convection is observed at higher values of  R. 

In solutions, convection may occur due to a 
gradient either in the temperature or in the solute 
concentration. The conditions for the onset of 
stable or unstable convection can be described in 
terms of the Rayleigh number R and a solute 
Rayleigh number Rs defined by 

Rs = g fl L8 An (30) 
Ksv 

Here /~ is the rate of change of density with 
concentration, An the solute concentration 
difference across the fluid and Ks the diffusivity 
of the solute. Since Ks is normally lower than the 
thermal diffusivity by some orders of magnitude, 
convection can occur at very low values of solute 
gradient. The conditions for stable and oscilla- 
tory convection in solution are given by Baines 
and Gill [76] and it is found that convection can 
occur when either the solute or the thermal 
gradient is de-stabilising, even if the bulk 
density in the solution increases with distance 
from the upper surface. 

Itti [77] has observed well-defined striations in 
sodium chlorate crystals grown from an aqueous 
solution in which convection was taking place. 
These striations were not present when the 
solute was transported purely by diffusion. In the 
flux pulling experiments of Smith and Elwell [57 ], 
the melt depth was normally only about 3 cm, 
but oscillations of amplitude 0.5~ were 
measured at a point 4 mm below the surface. The 
amplitude of the oscillations was reduced some- 
what by rotating the crucible as shown in fig. 13 
[78]. 

A fairly detailed study of striations in flux 
grown orthoferrite crystals was reported by Giess 
et  al  [79]. The bands in these materials were from 
2 to 60/xm in width and parallel to the growth 
interfaces. The lead concentration was found to 
vary from 1.10 to 0 .72~ in the darker and 
lighter bands respectively, but the silicon was 
0.04 ~ in both regions. The authors were unable 
to distinguish whether the Pb was in the ortho- 
ferrite lattice or in submicroscopic inclusions. 
The location of the striations in the crystal could 
be explained by a layer growth mechanism. 

The explanation of striations such as those 
observed by Giess et  al  in terms of oscillatory 
convection in the solution has not been firmly 
established. Crystals of up to 1 cm in size were 
grown in about t 30 h, an average growth.rate of 
2 x 10 .6 cm s -1. Thus a striation 30 Fm in width 
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Figure 13 Temperature oscillations in nickel ferrite-barium 
borate fluxed melt [78]. (a) A t  surface with crucible 
stationary. (b) 4 mm below surface with crucible station- 
ary. (c) 4 mm below surface with crucible rotated at 10 
rev./min, 

would be associated with a period of about 25 
min. The period of the oscillations shown in 
fig. 13 is about 3 min. Unless much slower 
oscillations occur in some systems, or the period 
of  the oscillations coresponds to some multiple of  
the thermal oscillations, it appears that there is 
no direct relationship between striations and 
oscillatory convection. It is, however, even more 
unlikely that different furnace controllers in 
several laboratories would exhibit regular per- 
iodic fluctuations and so imperfect temperature 
control is a rather implausible cause of all the 
observed striations. 

If  the concentration of solute n(x, t) is obtained 
by solution of the diffusion equations, oscillatory 
behaviour may be found in terms of the distance 
x from the interface, but not in terms of the time 
t. Volume diffusion may therefore be excluded 
as the source of  the striations, provided that the 
growth rate is low. An oscillatory interface 
kinetic process has not been proposed although 
Frank's "kinematic wave" theory [80], which 
describes the motion of a bunch of  steps across 

the crystal surface, might provide such an effect. 
In view of Itti's observations, an explanation 

of the origin of striations in terms of convection 
appears most probable, although the detailed 
process requires clarification. Experimental work 
which might lead to an understanding of  this 
process is clearly desirable. The observation by 
Giess et al [79] that striations are associated with 
impurity taken from the flux suggests that they 
may be eliminated even in the presence of  
unstable convection provided that experimental 
conditions otherwise favour stable growth. 

6. Conclusions 
The general description of the processes by which 
crystals grow from the flux appears to be similar 
to that for growth from aqueous solution. 
Perhaps the most striking impression obtained 
from a survey of the literature of flux growth is 
the absence of parameters such as diffusion 
coefficients and viscosities which are necessary 
in any detailed confrontation with theory. 
Surface studies of as-grown crystals lead to the 
conclusion that the mode of growth on crystal 
habit faces is by screw dislocation mechanism. 
Estimates of the rate of growth for boundary 
layer diffusion and for particle integration con- 
trol both yield values of the order of 10 -G cm s -1. 

Inclusions which are formed at the initial stage 
of growth by spontaneous nucleation may be 
eliminated by the use of a seed and those which 
form because of non-uniformity of growth over 
a surface will be avoided if the melt is well stirred. 
Cobb and Wallis [7] recommend rotation of the 
crucible as a means of achieving stirring but we 
would agree with Scheel and Schulz-Dubois [62] 
that pure rotation is unlikely to be wholly 
effective and that their technique of accelerated 
rotation is preferable. Even if a perfectly 
homogeneous solution is achieved, some flux 
will be included if a critical speed of growth is 
exceeded. No satisfactory expression for the 
critical growth condition is available at present 
and a constitutional supersaturation approach 
does not lead to a realistic stability criterion. The 
stabilising effect of the habit faces is thought to 
be responsible for the good quality exhibited by 
some crystals grown from the flux. 

Striations probably arise from temperature 
oscillations within the melt, but a suitably 
designed experiment is neceessary before their 
origin can be firmly established. 

It is hoped that this discussion will stimulate 
further experimental and theoretical work aimed 
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towards solving some of the outstanding 
problems. 
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